
CodeArts Artifact

Getting Started

Issue 01

Date 2023-11-30

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to "Vul. Response Process". For
details about the policy, see the following website:https://www.huawei.com/en/psirt/vul-response-process
For enterprise customers who need to obtain vulnerability information, visit:https://
securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Getting Started with a Release Repo... 1

2 Getting Started with a Self-hosted Repo.. 4

3 Releasing/Obtaining a Maven Component via a Build Task...6

4 Releasing/Obtaining an npm Component via a Build Task.. 11

5 Releasing/Obtaining a Go Component via a Build Task..18

6 Releasing/Obtaining a PyPI Component via a Build Task... 24

7 Uploading/Obtaining an RPM Component Using Linux Commands........................ 28

8 Uploading/Obtaining a Debian Component Using Linux Commands...................... 30

CodeArts Artifact
Getting Started Contents

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. iii

1 Getting Started with a Release Repo

This section describes the general procedure of a release repo to help you quickly
get started with it.

Before using a release repo, ensure that you already have a project. If no project is
available, create one.

Figure 1-1 shows the general procedure of a release repo.

Figure 1-1 General procedure of a release repo

Manually Uploading a Software Package on the Release Repo Page

Step 1 Log in to CodeArts, choose Services > Artifact from the top menu, and click the
Release Repos tab.

Step 2 Go to the repository with the same name as the project and click Upload in the
upper right corner.

Step 3 Select the target software package and click Open.

----End

CodeArts Artifact
Getting Started 1 Getting Started with a Release Repo

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00021sm.html

Releasing a Software Package via a Build Task to a Release Repo
The following procedure uses Maven as an example to describe how to release a
software package via a build task to a release repo.

Step 1 Prepare a code repository.

1. Log in to CodeArts and go to a created project.
2. Go to CodeArts Repo and create a Maven repository. For details, see Creating

a Repository Using a TemplateCreating a Repository Using a Template. This
procedure uses the Java Web Demo template.

Step 2 Configure and execute a build task.

1. Go to the code repository, and click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Maven and click Next.

2. Edit the build actions as required. In this example, the default values in the
template are used.

3. Click Create and Run to start the build task.
After the task is successfully executed, record the number following # in the
upper left, as shown in Figure 1-2.

Figure 1-2 Build task

Step 3 View the software package.

1. Access the release repo of a project.
2. Go to the folder with the same name as the build task.
3. Go to the folder named after the number on the build task page, and view

the generated software package, as shown in Figure 1-3.

Figure 1-3 Viewing the software package

CodeArts Artifact
Getting Started 1 Getting Started with a Release Repo

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html

NO TE

If you have set Version for the Upload Software Package to Release Repos action,
the software package will be saved in a folder named after the release version.

----End

Obtaining a Software Package from a Release Repo for Deployment

This section uses the software package released in Releasing a Software Package
via a Build Task to a Release Repo as an example to describe how to obtain this
package from a release repo for deployment.

Step 1 Go to the CodeArts homepage and click the target project name to access the
project.

Step 2 Choose Settings > General > Basic Resources. The Host Clusters page is
displayed.

Step 3 Click Create Host Cluster, enter the following information, and click Save. Add
the target host to the created host cluster.

Step 4 Create an application. Configure it as required. In this example, configure it as
follows:

● Select the Deploy a Tomcat Application template.

● In the Select a Deployment Source action, select the software package
stored in the location mentioned in Releasing a Software Package via a
Build Task to a Release Repo.

Step 5 On the Environment Management tab page, create environment and add hosts.
For details, see Creating a Host Group and Adding Trusted Hosts to the Host
Group.

Step 6 Click Save & Deploy. Execute the deployment application. When the deployment
status becomes successful, the deployment application has obtained the software
package from the release repo and has deployed it on the target host.

----End

CodeArts Artifact
Getting Started 1 Getting Started with a Release Repo

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/eu/usermanual-deployman/deployman_hlp_0003.html
https://support.huaweicloud.com/eu/usermanual-deployman/deployman_hlp_1022.html
https://support.huaweicloud.com/eu/usermanual-deployman/deployman_hlp_1022.html

2 Getting Started with a Self-hosted Repo

This section describes the general procedure of a self-hosted repo to help you
quickly get started with it.

Figure 2-1 shows the general procedure of a self-hosted repo.

Figure 2-1 General procedure of a self-hosted repo

Creating a Self-hosted Repo

Step 1 Log in to the CodeArts homepage, choose Services > Artifact on the top
navigation bar, and click the Self-hosted Repos tab.

Step 2 Click Create Self-hosted Repo on the left.

Step 3 Configure the basic information and click OK.

CodeArts Artifact
Getting Started 2 Getting Started with a Self-hosted Repo

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 4

For details about how to configure a repository, see Creating a Self-hosted Repo.

----End

Uploading a Private Component on the Self-hosted Repo Page

Step 1 Go to the self-hosted repo page, and click the target repository in the left pane.

Step 2 Click Upload.

Step 3 Set the component parameters, select the file, and click Upload.

For details about how to set the component parameters, see Uploading a Private
Component.

----End

Uploading/Obtaining a Private Component via a Build Task
You can upload Maven, npm, Go, and PyPI components to a self-hosted repo and
obtain these components from the repository to use them as build dependencies.

For details, see:

● Releasing/Obtaining a Maven Component via a Build Task
● Releasing/Obtaining an npm Component via a Build Task
● Releasing/Obtaining a Go Component via a Build Task
● Releasing/Obtaining a PyPI Component via a Build Task

Uploading/Obtaining an RPM Component Using Linux Commands
By running Linux commands, you can upload RPM and Debian components to or
download them from a self-hosted repo.

For details, see Uploading/Obtaining an RPM Component Using Linux
Commands.

For details, see Uploading/Obtaining a Debian Component Using Linux
Commands.

CodeArts Artifact
Getting Started 2 Getting Started with a Self-hosted Repo

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0010.html
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0010.html

3 Releasing/Obtaining a Maven
Component via a Build Task

This section describes how to release a Maven component to a self-hosted repo
via a build task and obtain the component from the repository for deployment.

Prerequisites
1. You already have a project. If no project is available, create one.
2. You have permissions for the current self-hosted repo. For details, see

Managing User Permissions.
3. You have created a self-hosted Maven repo and associated it with the

project.

Releasing a Maven Component to a Self-hosted Repo

Step 1 Configure a code repository.

1. Log in to CodeArts and go to a created project. Choose Services > Repo on
the top navigation bar.

2. Create a Maven repository. For details, see Creating a Repository Using a
Template. This procedure uses the Java Maven Demo template.

3. Go to the code repository and view the component configuration in the
pom.xml file.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00021sm.html
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section2
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section6
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section6
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html

Step 2 Configure and execute a build task.

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Blank Template and click Next.

2. Add the Build with Maven action.

3. Edit the Build with Maven action.
– Select the desired tool version. In this example, maven3.5.3-jdk8-open is

used.
– Find the following command and delete # in front of this command:

#mvn deploy -Dmaven.test.skip=true -U -e -X -B

Find the following command and add # in front of this command:
mvn package -Dmaven.test.skip=true -U -e -X -B

– Select Configure all POMs under Release to Self-hosted Repos, and
select the Maven repository associated with the project.

NO TE

If no option is available in the drop-down list, associate the Maven repository
with the project of the build task by referring to Managing the Association
Between Repositories and Projects.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 7

https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section6
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section6

Step 3 Click Create and Run to start the build task.

After the task is successfully executed, go to the self-hosted repo and find the
uploaded Maven component.

----End

Obtaining a Maven Component from a Self-hosted Repo
The following procedure uses the Maven component released in Releasing a
Maven Component to a Self-hosted Repo as an example to describe how to
obtain the component from a self-hosted repo as a dependency.

Step 1 Configure a code repository.

1. Go to the self-hosted Maven repo and find the Maven component. Click
the .pom file with the same name as the component and click Download on
the right.

2. Open the downloaded file and locate the <groupId>, <artifactId>, and
<version> lines.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 8

3. Go to CodeArts Repo. Create a Maven repository. For details, see Creating a
Repository Using a Template. This procedure uses the Java Maven Demo
template.

4. Go to the code repository and edit the pom.xml file. Copy the dependency
code segment to the dependencies code segment and modify the version
number (for example, 2.0).

Step 2 Configure and execute a build task.

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.

Select Blank Template and click Next.

2. Add the Build with Maven action.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html

3. Click Create and Run to start the build task.
After the task is successfully executed, view the task details. If information
similar to the following is found in the log, the dependency has been
downloaded from the self-hosted repo.

----End

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 10

4 Releasing/Obtaining an npm
Component via a Build Task

This section describes how to release a component to a self-hosted npm repo via a
build task and obtain a dependency from the repository for deployment.

Prerequisites
1. You already have a project. If no project is available, create one.
2. You have created a self-hosted npm repo.
3. You have permissions for the current self-hosted repo. For details, see

Managing User Permissions.

Releasing a Component to a Self-hosted npm Repo

Step 1 Download the configuration file of the self-hosted repo.

1. Log in to the CodeArts homepage and access the npm self-hosted repo for
npm. Click Settings in the upper right corner and record the repository path.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 11

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00021sm.html
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section2

2. Click Cancel to return to the self-hosted repo page. Click Set Me Up.
3. In the displayed dialog box, click Download Configuration File.

4. Save the downloaded npmrc file as an .npmrc file.

Step 2 Configure a code repository.

1. Go to CodeArts Repo and create a Node.js repository. For details, see
Creating a Repository Using a Template. This procedure uses the Nodejs
Webpack Demo template.

2. Go to the code repository and upload the .npmrc file to the root directory of
the code repository.

3. Find the package.json file in the code repository and open it. Add the
repository address recorded on the Basic Information on the Settings page
to the name field in the file.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 12

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0034.html

NO TE

If the name field cannot be modified, add the address to the Include Patterns field on
the Basic Information on the Settings page.

Step 3 Configure and execute a build task.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 13

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Blank Template and click Next.

2. Add the Build with npm action.

3. Edit the Build with npm action.
– Select the desired tool version. In this example, nodejs12.7.0 is used.
– Delete the existing commands and run the following instead:

export PATH=$PATH:/root/.npm-global/bin
npm config set strict-ssl false
npm publish

4. Click Create and Run to start the build task.
After the task is successfully executed, go to the self-hosted repo and find the
uploaded npm component.

----End

Obtaining a Dependency from a Self-hosted npm Repo

The following procedure uses the npm component released in Releasing a
Component to a Self-hosted npm Repo as an example to describe how to obtain
a dependency from a self-hosted npm repo.

Step 1 Configure a code repository.

1. Go to CodeArts Repo and create a Node.js repository. For details, see
Creating a Repository Using a Template. This procedure uses the Nodejs
Webpack Demo template.

2. Obtain the .npmrc file (see Releasing a Component to a Self-hosted npm
Repo) and upload it to the root directory of the code repository where the
npm dependency is to be used.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 14

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html

3. Find and open the package.json file in the code repository, and configure the
dependency to the dependencies field. In this document, the value is as
follows:
"@test/vue-demo": "^1.0.0"

Step 2 Configure and execute a build task.

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Blank Template and click Next.

2. Add the Build with npm action.

3. Edit the Build with npm action.
– Select the desired tool version. In this example, nodejs12.7.0 is used.
– Delete the existing commands and run the following instead:

export PATH=$PATH:/root/.npm-global/bin
npm config set strict-ssl false
npm install --verbose

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 15

Step 3 Click Create and Run to start the build task.

After the task is successfully executed, view the task details. If information similar
to the following is found in the log, the dependency has been downloaded from
the self-hosted repo.

----End

npm Commands

When configuring build tasks, you can also run the following npm commands as
required:

● Delete an existing component from a self-hosted repo.
npm unpublish @socpe/packageName@version

● Obtain tags.
npm dist-tag list @scope/packageName

● Add a tag.
npm dist-tag add @scope/packageName@version tagName --registry registryUrl --verbose

● Delete a tag.
npm dist-tag rm @scope/packageName@version tagName --registry registryUrl --verbose

Command parameter description:

● scope: path of a self-hosted repo. For details about how to obtain the path,
see Releasing a Component to a Self-hosted npm Repo.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 16

● packageName: the part following scope in the name field of the
package.json file.

● version: value of the version field in the package.json file.
● registryUrl: URL of the self-hosted repo referenced by scope in the

configuration file.
● tagName: tag name.

The following uses the private component released in Releasing a Component to
a Self-hosted npm Repo as an example:

● scope: test
● packageName: vue-demo
● version: 1.0.0

The command for deleting this component is as follows:

npm unpublish @test/vue-demo@1.0.0

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 17

5 Releasing/Obtaining a Go Component
via a Build Task

This section describes how to release a component to a self-hosted Go repo via a
build task and obtain a dependency from the repository for deployment.

Prerequisites
1. You already have a project. If no project is available, create one.
2. You have created a self-hosted Go repo.
3. You have permissions for the current self-hosted repo. For details, see

Managing User Permissions.

Releasing a Component to a Self-hosted Go Repo

Step 1 Download the configuration file of the self-hosted repo.

1. Log in to the CodeArts homepage and access the self-hosted repo for Go.
Click Set Me Up on the right of the page.

2. In the displayed dialog box, click Download Configuration File.

Step 2 Configure a code repository.

1. Go to CodeArts Repo. Create a Go repository. For details, see Creating a
Repository Using a Template. This procedure uses the Go web Demo
template.

2. Prepare the go.mod and upload it to the root directory of the code
repository. The following figure shows the go.mod file used in this example.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00021sm.html
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section2
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0034.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0034.html

Step 3 Configure and execute a build task.

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Blank Template and click Next.

2. Add the Build in Go action.

3. Edit the Build in Go action.
– Select the desired tool version. In this example, go-1.13.1 is used.
– Delete the existing commands, open the configuration file downloaded in

Step 1, and copy the commands for configuring Go environment
variable in Linux to the command box.

– Copy the Go upload command segment in the configuration file to the
command box, and replace the parameters in the commands by referring
to Go Module Packaging. (In this example, the package version is
v1.0.0.)

4. Click Create and Run to start the build task.
When a message is displayed indicating build successful, go to the self-
hosted repo and find the uploaded Go component.

----End

Obtaining a Dependency from a Self-hosted Go Repo

The following procedure uses the Go component released in Releasing a
Component to a Self-hosted Go Repo as an example to describe how to obtain a
dependency from a self-hosted Go repo.

Step 1 Download the configuration file of the self-hosted repo by referring to Releasing
a Component to a Self-hosted Go Repo.

Step 2 Go to CodeArts Repo and create a Go repository. For details, see Creating a
Repository Using a Template. This procedure uses the Go web Demo template.

Step 3 Configure and execute a build task.

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Blank Template and click Next.

2. Add the Build in Go action.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 19

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html

3. Edit the Build in Go action.
– Select the desired tool version. In this example, go-1.13.1 is used.
– Delete the existing commands, open the downloaded configuration file,

and copy the commands for configuring Go environment variables in
Linux to the command box.

– Copy the Go download commands in the configuration file to the
command box and replace the <modulename> parameter with the
actual value. (In this example, the parameter is set to example.com/
demo).

Step 4 Click Create and Run to start the build task.

When a message is displayed indicating build successful, view the task details. If
information similar to the following is found in the log, the dependency has been
downloaded from the self-hosted repo.

----End

Go Module Packaging
This section describes how to build and upload Go components through Go
module packaging.

Perform the following steps:

1. Create a source folder in the working directory.
mkdir -p {module}@{version}

2. Copy the code source to the source folder.
cp -rf . {module}@{version}

3. Compress the component into a ZIP package.
zip -D -r [package name] [package root directory]

4. Upload the component ZIP package and the go.mod file to the self-hosted
repo.
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/{filePath} -T {{localFile}}

The component directory varies according to the package version. The version can
be:

● Versions earlier than v2.0: The directory is the same as the path of the
go.mod file. No special directory structure is required.

● v2.0 or later:
– If the first line in the go.mod file ends with /vX, the directory must

contain /vX. For example, if the version is v2.0.1, the directory must
contain v2.

– If the first line in the go.mod file does not end with /vN, the directory
remains unchanged and the name of the file to be uploaded must
contain +incompatible.

The following are examples of component directories for different versions:

● Versions earlier than v2.0
The go.mod file is used as an example.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 20

a. Create a source folder in the working directory.
The value of module is example.com/demo and that of version is 1.0.0.
The command is as follows:
mkdir -p ~/example.com/demo@v1.0.0

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo@v1.0.0/

c. Compress the component into a ZIP package.
Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a component
package. In this command, the package root directory is example.com
and the package name is v1.0.0.zip. The command is as follows:
zip -D -r v1.0.0.zip example.com/

d. Upload the component ZIP package and the go.mod file to the self-
hosted repo.
Parameters username, password, and repoUrl can be obtained from the
configuration file of the self-hosted repo.

▪ For the ZIP package, the value of filePath is example.com/
demo/@v/v1.0.0.zip and that of localFile is v1.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/@v/v1.0.0.mod and that of localFile is example.com/
demo@v1.0.0/go.mod.

The command is as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/v1.0.0.zip -T
v1.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/v1.0.0.mod -T
example.com/demo@v1.0.0/go.mod

● v2.0 and later, with the first line in go.mod ending with /vX
The go.mod file is used as an example.

a. Create a source folder in the working directory.
The value of module is example.com/demo/v2 and that of version is
2.0.0. The command is as follows:
mkdir -p ~/example.com/demo/v2@v2.0.0

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo/v2@v2.0.0/

c. Compress the component into a ZIP package.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 21

Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a component
package. In this command, the package root directory is example.com
and the package name is v2.0.0.zip. The command is as follows:
zip -D -r v2.0.0.zip example.com/

d. Upload the component ZIP package and the go.mod file to the self-
hosted repo.
Parameters username, password, and repoUrl can be obtained from the
configuration file of the self-hosted repo.

▪ For the ZIP package, the value of filePath is example.com/
demo/v2/@v/v2.0.0.zip and that of localFile is v2.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/v2/@v/v2.0.0.mod and that of localFile is example.com/
demo/v2@v2.0.0/go.mod.

The command is as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/v2/@v/v2.0.0.zip -T
v2.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/v2/@v/v2.0.0.mod -T
example.com/demo/v2@v2.0.0/go.mod

● v2.0 and later, with the first line in go.mod not ending with /vX
The go.mod file is used as an example.

a. Create a source folder in the working directory.
The value of module is example.com/demo and that of version is 3.0.0.
The command is as follows:
mkdir -p ~/example.com/demo@v3.0.0+incompatible

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo@v3.0.0+incompatible/

c. Compress the component into a ZIP package.
Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a component
package. In this command, the package root directory is example.com
and the package name is v3.0.0.zip. The command is as follows:
zip -D -r v3.0.0.zip example.com/

d. Upload the component ZIP package and the go.mod file to the self-
hosted repo.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 22

Parameters username, password, and repoUrl can be obtained from the
configuration file of the self-hosted repo.

▪ For the ZIP package, the value of filePath is example.com/
demo/@v/v3.0.0+incompatible.zip and that of localFile is
v3.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/@v/v3.0.0+incompatible.mod and that of localFile is
example.com/demo@v3.0.0+incompatible/go.mod.

The command is as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/
v3.0.0+incompatible.zip -T v3.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/
v3.0.0+incompatible.mod -T example.com/demo@v3.0.0+incompatible/go.mod

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 23

6 Releasing/Obtaining a PyPI Component
via a Build Task

This section describes how to release a component to a self-hosted PyPI repo via a
build task and obtain a dependency from the repository for deployment.

Prerequisites
1. You already have a project. If no project is available, create one.
2. You have created a self-hosted PyPI repo.
3. You have permissions for the current self-hosted repo. For details, see

Managing User Permissions.

Releasing a Component to a Self-hosted PyPI Repo

Step 1 Download the configuration file of the self-hosted repo.

1. Log in to the CodeArts homepage and access the self-hosted repo for PyPI.
Click Set Me Up on the right of the page.

2. In the displayed dialog box, find the For Publishing and click Download
Configuration File.

3. Save the downloaded PYPIRC file as a .pypirc file.

Step 2 Configure a code repository.

1. Go to CodeArts Repo and create a Python repository. For details, see Creating
a Repository. This procedure uses the Python3 Demo template.

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 24

https://support.huaweicloud.com/eu/usermanual-projectman/devcloud_hlp_00021sm.html
https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section2
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html

2. Go to the code repository and upload the .pypirc file to the root directory of
the code repository.

Step 3 Configure and execute a build task.

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Blank Template and click Next.

2. Add the Build with Setuptools action.

3. Edit the Build with Setuptools action.
– Select the desired tool version. In this example, python3.6 is used.
– Delete the existing commands and run the following instead:

Ensure that the setup.py file exists in the root directory of the code, and run the following
command to pack the project into a WHL package.
python setup.py bdist_wheel
Set the .pypirc file in the root directory of the current project as the configuration file.
cp -rf .pypirc ~/
Upload the component to the self-hosted PyPI repo.
twine upload -r pypi dist/*

NO TE

If certificate verification fails during the upload, add the following command to
the first line of the preceding command to skip certificate verification:

export CURL_CA_BUNDLE=""

4. Click Create and Run to start the build task.
After the task is successfully executed, go to the self-hosted repo and find the
uploaded PyPI component.

----End

Obtaining a Dependency from a Self-hosted PyPI Repo

The following procedure uses the PyPI component released in Releasing a
Component to a Self-hosted PyPI Repo as an example to describe how to obtain
a dependency from a self-hosted PyPI repo.

Step 1 Download the configuration file of the self-hosted repo.

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 25

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0034.html

1. Go to the self-hosted PyPI repo. Click Set Me Up on the right of the page.
2. In the displayed dialog box, find the For Download and click Download

Configuration File.

3. Save the downloaded pip.ini file as a pip.conf file.

Step 2 Configure a code repository.

1. Go to CodeArts Repo and create a Python repository. For details, see Creating
a Repository. This procedure uses the Python3 Demo template.

2. Go to CodeArts Repo, and upload the pip.conf file to the root directory of the
code repository where the PyPI dependency is to be used.

3. Find the requirements.txt file in the repository and open it. If the file is not
found, create it by referring to Creating a File. Add the dependency
configuration to this file, as shown in the following figure.
demo ==1.0

Step 3 Configure and execute a build task.

1. On the code repository page, click Create Build Task in the upper right. The
Create Build Task page is displayed.
Select Blank Template and click Next.

2. Add the Build with Setuptools action.

3. Edit the Build with Setuptools action.
– Select the desired tool version. In this example, python3.6 is used.
– Delete the existing commands and run the following instead:

Set the pip.conf file in the root directory of the current project as the configuration file.
 export PIP_CONFIG_FILE=./pip.conf

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 26

https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/eu/usermanual-codeartsrepo/codeartsrepo_03_0034.html

Download the PyPI component.
 pip install -r requirements.txt --no-cache-dir

Step 4 Click Create and Run to start the build task.

After the task is successfully executed, view the task details. If information similar
to the following is found in the log, the dependency has been downloaded from
the self-hosted repo.

----End

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 27

7 Uploading/Obtaining an RPM
Component Using Linux Commands

This section describes how to use Linux commands to upload a component to a
self-hosted RPM repo and obtain a dependency from the repository.

Prerequisites
1. An RPM component is available.
2. A Linux host that can connect to the public network is available.
3. You have created a self-hosted RPM repo.
4. You have permissions for the current self-hosted repo. For details, see

Managing User Permissions.

Releasing a Component to a Self-hosted RPM Repo

Step 1 Log in to the CodeArts homepage and access the self-hosted repo for RPM. Click
Set Me Up on the right of the page.

Step 2 In the displayed dialog box, click Download Configuration File.

Step 3 On the Linux host, run the following command to upload an RPM component:
curl -u {{user}}:{{password}} -X PUT https://{{repoUrl}}/{{component}}/{{version}}/ -T {{localFile}}

In this command, user, password, and repoUrl can be obtained from the RPM
upload command in the configuration file downloaded in the previous step.

● user: character string before the colon (:) between curl -u and -X

CodeArts Artifact
Getting Started

7 Uploading/Obtaining an RPM Component Using
Linux Commands

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 28

https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section2

● password: character string after the colon (:) between curl -u and -X

● repoUrl: character string between https:// and /{{component}}

component, version, and localFile can be obtained from the RPM component.
The hello-0.17.2-54.x86_64.rpm component is used as an example.

● component: software name, for example, hello.

● version: software version, for example, 0.17.2.

● localFile: RPM component, for example, hello-0.17.2-54.x86_64.rpm.

The following figure shows the complete command.

Step 4 After the command is successfully executed, go to the self-hosted repo and find
the uploaded RPM component.

----End

Obtaining a Dependency from a Self-hosted RPM Repo

The following procedure uses the RPM component released in Releasing a
Component to a Self-hosted RPM Repo as an example to describe how to obtain
a dependency from a self-hosted RPM repo.

Step 1 Download the configuration file of the self-hosted RPM repo by referring to
Releasing a Component to a Self-hosted RPM Repo.

Step 2 Open the configuration file, replace all {{component}} in the file with the value of
{{component}} (hello in this file) used for uploading the RPM file, delete the
RPM upload command, and save the file.

Step 3 Save the modified configuration file to the /etc/yum.repos.d/ directory on the
Linux host.

Step 4 Run the following command to download the RPM component: Replace hello
with the actual value of component.
yum install hello

----End

CodeArts Artifact
Getting Started

7 Uploading/Obtaining an RPM Component Using
Linux Commands

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 29

8 Uploading/Obtaining a Debian
Component Using Linux Commands

This section describes how to use Linux commands to upload a component to a
self-hosted Debian repo and obtain a dependency from the repository.

Prerequisites
1. A Debian component is available.
2. A Linux host that can connect to the public network is available.
3. You have created a self-hosted Debian repo.
4. You have permissions for the current self-hosted repo. For details, see

Managing User Permissions.

Releasing a Component to a Self-hosted Debian Repo

Step 1 Log in to the CodeArts homepage and access the self-hosted repo for Debian.
Click Set Me Up on the right of the page.

Step 2 In the displayed dialog box, click Download Configuration File.

Step 3 On the Linux host, run the following command to upload a Debian component:

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 30

https://support.huaweicloud.com/eu/usermanual-cloudartifact/cloudartifact_01_0011.html#section2

curl -u <USERNAME>:<PASSWORD> -X PUT "https:// <repoUrl>/
<DEBIAN_PACKAGE_NAME>;deb.distribution=<DISTRIBUTION>;deb.component=<COMPONENT>;deb.archite
cture=<ARCHITECTURE>" -T <PATH_TO_FILE>

In this command, USERNAME, PASSWORD, and repoUrl can be obtained from
the Debian upload command in the configuration file downloaded in the
previous step.

● USERNAME: username used for uploading files, which can be obtained from
the Debian configuration file. For details, see the example figure.

● PASSWORD: password used for uploading files, which can be obtained from
the Debian configuration file. For details, see the example figure.

● repoUrl: URL used for uploading files, which can be obtained from the Debian
configuration file. For details, see the example figure.

DEBIAN_PACKAGE_NAME, DISTRIBUTION, COMPONENT, and
ARCHITECTURE can be obtained from the Debian component.
The a2jmidid_8_dfsg0-1_amd64.deb component is used as an example.

● DEBIAN_PACKAGE_NAME: software package name, for example,
a2jmidid_8_dfsg0-1_amd64.deb.

● DISTRIBUTION: release version, for example, trusty.
● COMPONENT: component name, for example, main.
● ARCHITECTURE: system architecture, for example, amd64.
● PATH_TO_FILE: local storage path of the Debian component, for example, /

root/a2jmidid_8_dfsg0-1_amd64.deb.
The following figure shows the complete command.

Step 4 After the command is successfully executed, go to the self-hosted repo and find
the uploaded Debian component.

----End

Obtaining a Dependency from a Self-hosted Debian Repo
The following procedure uses the Debian component released in Releasing a
Component to a Self-hosted Debian Repo as an example to describe how to
obtain a dependency from a self-hosted Debian repo.

Step 1 Download the public key file of the self-hosted Debian repo by referring to
Releasing a Component to a Self-hosted Debian Repo.

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 31

Step 2 Import the gpg public key.
gpg --import <PUBLIC_KEY_PATH>

PUBLIC_KEY_PATH: local path for storing the Debian public key, for example,
artifactory.gpg.public.

Step 3 Add the public key to the list of keys used by apt to authenticate packages.
gpg --export --armor <SIG_ID> | apt-key add -

Step 4 Add the apt repository source.

Open the configuration file (for details about how to obtain the file, see
Releasing a Component to a Self-hosted Debian Repo), replace all
DISTRIBUTION fields with the value of COMPONENT (for example, main) used
for uploading the Debian file, and add the repository source based on the
downloaded configuration file sources.list.

Step 5 After the repository source is added, run the following command to update the
repository source:
apt-get update

Step 6 Run the following command to download the Debian package: Replace a2jmidid
with the actual value of PACKAGE.
apt download a2jmidid

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 32

NO TE

Method for obtaining packages:
● Download the Packages source data of the Debian component. The following uses the

a2jmidid package as an example:

----End

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2023-11-30) Copyright © Huawei Technologies Co., Ltd. 33

	Contents
	1 Getting Started with a Release Repo
	2 Getting Started with a Self-hosted Repo
	3 Releasing/Obtaining a Maven Component via a Build Task
	4 Releasing/Obtaining an npm Component via a Build Task
	5 Releasing/Obtaining a Go Component via a Build Task
	6 Releasing/Obtaining a PyPI Component via a Build Task
	7 Uploading/Obtaining an RPM Component Using Linux Commands
	8 Uploading/Obtaining a Debian Component Using Linux Commands

